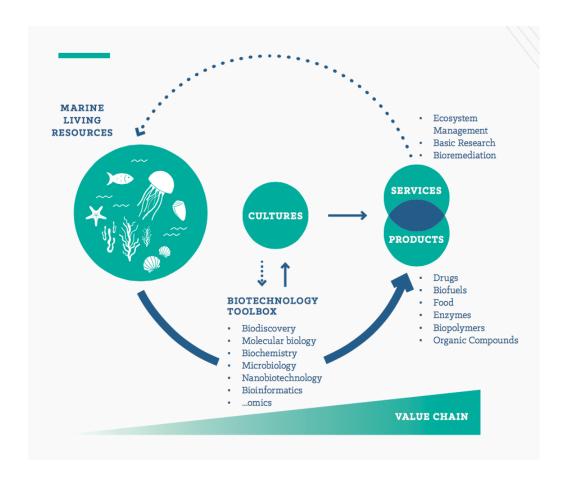


Research and Innovation- Workshop 2.B

Maximising the value of marine bioresources - the future role of marine biotechnology in the Atlantic area

Dermot Hurst - Marine Institute (IE)

Alice Stack - Marigot Ltd (IE)


Charlie Bavington - Glycomar Ltd (UK)

Jacques Fuchs, DG Research and Innovation

Marine Biotechnology

Marine biotechnology is the application of science and technology to living organisms from marine resources, as well as parts, products and models thereof, to alter living or non-living materials for the production of knowledge, goods and services.

Workshop Objective

Identify the key challenges for MBT in maximising Atlantic resources to create value
What action(s) are need to meet the challenges and deliver concrete outcomes?

Some questions to reflect on...

- How to ensure continuity of supply of marine biomass within the Atlantic area?
- How to maximise contributions from marine biotechnology in strengthening the position of the Atlantic area in the European Bioeconomy?
- What conditions are required to allow and encourage European SMEs to participate in developing new marine biotechnology enabled enterprise activity?
- How can linkages between research institutions and industry be made more effective?
- What scope exists for the creation of a marine biotechnology RTDI network(s) within the Atlantic area and how could they be developed?
- What are the prime competitive advantages of the Atlantic area regarding the use marine biotechnology to create value and employment?

ERA-MBT Foresight activity

Insights to the impact of uncertain forces driving the future of marine biotechnology – by creating scenarios

- Ensuring food security
- Sustainable manage natural resources
- Reduce dependency on nonrenewables
- Create jobs and maintain competitiveness
- Invest in knowledge, innovation and skills

- The panel will provide a wide range of perspectives
- Discuss the BIG changes e.g., society, economic, climate – drivers (and others you identify)
- Cluster, group or prioritise them
- Sketch some pictures scenarios (+ve and –ve)

Views on the future – a challenge!

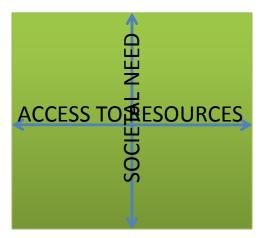
There are no perfect answers!

Mega trends

MEGATREND	SUBTREND
	A growth in world population to 8.3 billion people
Changing demographics	An aging society as the median age rises 5 years to 34 years
	• Increasing urbanisation reflected in 59% of the world living in cities
	Continued globalisation with exports and FDI growing faster than GDP
Globalisation and future markets	• Emergence of BRICS as new powerhouses - GDP growth of 7.95 p/a
	• Growth of 5.9% in the NEXT 11 and strong growth in ASEAN 5
	Increase in primary energy consumption of 26%
Scarcity of resources	Half the world will live in areas of high water stress i.e. shortage
	Some rare metals will run out
	Rising food demand
	• Continued increase in CO2 emissions – by 16%
Climate change	 Average global temperature to rise by 0.5 – 1.5 deg C
	Declining biodiversity and increase in extreme weather events
	• Extensive diffusion of technology – at high speed across the globe
Technology and innovation	• Innovations will change our lives robotics and the internet of things
	• The age of life sciences – challenged by demographics boosted by R&D
	• Know-how base increases as 55% of population complete at lease 2nd
Global knowledge society	level education
	Gender gap narrows
	"War" over talent as demand for qualified people exceeds supply
	A shift to global cooperation as nations share responsibility
Sharing global responsibility	Number of and power of NGOs will grow significantly
	• Increase in philanthropic donations but philosophy of giving will change

^[1] Bangladesh, Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan, the Philippines, Turkey, South Korea and Vietnam

^[2] Association of Southeast Asian Nations - Indonesia, Malaysia, Philippines, Thailand, Vietnam


^[3] Internet of things – communications/sensors embedded within common artifacts

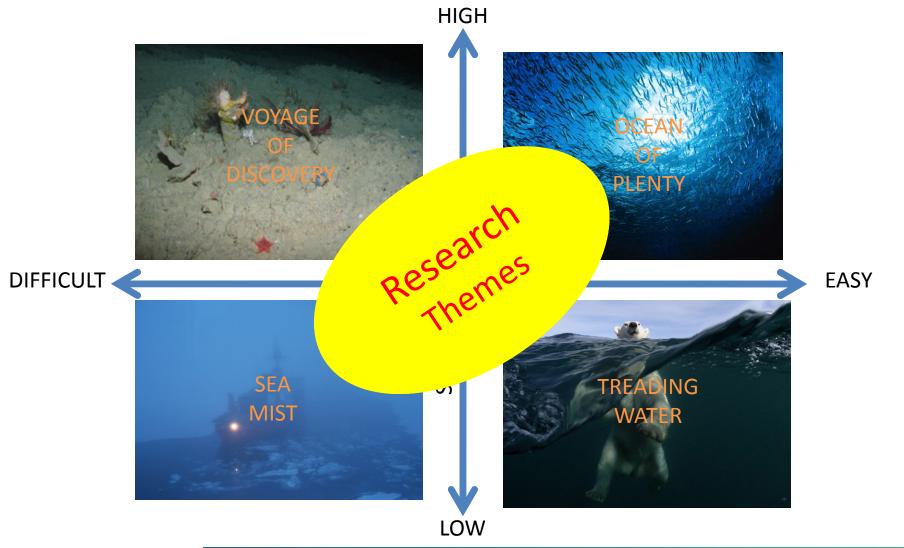
Main drivers

MarineBiotech

- → Health, Demographic Change and Wellbeing
- Food Security, Sustainable Agriculture and Forestry, Marine, Maritime at Water Research and the Bioeconomy ¶
- → Aquatic living resources and marine research
- → Agri-food sector for a safe and healthy diet
- → Bio-based industries
- Secure, Clean and Efficient Energy
- → Climate Action, Environment, Resource Efficiency and Raw Materials
- • → Europe in a changing world Inclusive, innovative and reflective societies

- Demand for materials/biomass
- → Climate change ¶
- → Demographics ¶
- → Economic performance
- → Societal values/needs ¶
- Technological development ¶
- Regulatory systems ¶
- Environmental policy ¶
- Discovery processes ¶
- Access to resource ¶
- Research management ¶

Direction Human resources Marine species Environment



Marine Biotechnology Scenarios

MarineBiotech

Exploration

- The development of predictive tools to improve the identification and targeting of biological "hot-spots" in the oceans.
- The discovery of new marine species as a source of novel materials.
- Continue to target microorganisms deep sea sediments, microbial symbionts from sponges and other organisms; macro and micro algae; fish and fish processing discards, bivalves and marine fungi as sources of biologically active natural products.
- Exploring the chemical and biological diversity of marine organisms.
- Develop alternatives to the traditional collection or harvesting of marine organisms, including the development of methods to allow in-situ assessment and screening of marine organisms.

Biomass production and processing

- Increasing the production of biomass from sustainable marine resources
- Establishing the controlled culture of marine biomass at sea and on land, including developing techniques to culture marine organisms not currently in culture.
- Creating efficient transformation and refining processes, including concepts of multi-stream inputs and bio refining of mixed biomass feedstock.
- Reducing the complexity of the supply chain by integrating biomass production and refining, reducing energy demand in processing marine biomass.
- Enhancing the sustainability of the marine biomass conversion by minimising the creation of waste.
- Remove bottlenecks in marine biomass transformation and conversion
- Research to support the expansion of cultured biomass production (breeding/hatchery/genetics/nutrition and health

Product development/applications/diversifications

- Maximise the sustainable use of marine bio-resources for applications in human and animal food, as food ingredients, therapeutic compounds, medical devices and biomaterials, cosmetics and cosmeceuticals and as novel industrial materials and processes.
- Create novel biosensors based on marine organisms and explore their use in monitoring the status of marine environments and in assessing safety of marine origin foods.
- Evaluate the role of marine origin enzymes in biorefining and biotransformation processes for industrial use (e.g. food, fine chemicals, consumer products and biopharmaceuticals).
- Investigate the biocompatibility of marine materials and assess their for use in medical devices, for drug delivery or in the repair, replacement or regeneration of tissue.
- Explore the potential of marine organisms to act as experimental models in health related research.

Thematic Research Areas Enabling technologies and infrastructure

- Identifying opportunities for the marine biotechnology community the adopt new technologies
- Identify and build new competencies and networks to support marine biotechnology research and innovation
- Developing deep-sea equipment for use in habitat mapping, biological resource assessment and screening
- Exploring methodologies to increase the rate of the discovery of novel materials
- Reducing the costs associated with discovery related activities
- Identify and develop emerging technologies to support marine biotechnology knowledge and information management
- Creating pilot facilities to support scale-up activities
- Develop and establish shared and open access marine data and biological repositories

Policy support and stimulation

- Initiate research to identify ways in which to expand access to marine bioresources for discovery purposes in European waters and on the high seas
- Develop a comprehensive planned policy research programme to apply the knowledge gained from marine biotechnology research to inform public policy, governance and regulation of marine environment and marine derived products
- Provide research to support the introduction of common regulations across member states regarding the harvesting, culture and exploitation of marine biomass
- Establish a knowledge base for efficient and responsive regulation and policy development relating to marine bioresources
- Identify mechanisms to attract greater industry participation in marine biotechnology related research
- Identify policy developments to that advance marine biomass production and processing capabilities and reduce barriers to the development of new markets for marine derived products

Acknowledgements

- Support from DG Mare and DG RD
- Atlantic Action Support Team
- Members of the ERA-MBT project
- Marine Institute

