The impact of quota changes on the discrete fishing site choice of vessels in Irish demersal otter trawl fisheries

Ben Breen ${ }^{1}$, Hans Gerritsen ${ }^{2}$, Stephen Hynes ${ }^{1}$
${ }^{1}$ The Socio-Economic Marine Research Unit (SEMRU)
National University of Ireland, Galway
${ }^{2}$ Irish Marine Institute, Galway, Ireland

6th Annual Beaufort SEMRU Workshop
Whitaker Institute, NUIG
24 ${ }^{\text {th }}$ November, 2015

Background

- In the last 30 years, particularly the second half of that period, a number of studies have analysed fishermen's fishing related choices/behaviour
- E.g. Bockstael and Opaluch (1983/4); Ward and Sutinen (1994); Curtis and Hicks (2000); Mistiaen and Strand (2000); Smith (2005); Eggert and Tevertas (2004); Valcic (2008).
- These approaches:
- Employ discrete choice econometric methods
- Investigate how various biological, economic and regulatory changes affect the:
- choice of fishery, entry exit decision, fishing location choice, gear choice etc.

Background

- Significant and tangible uses:
- Informs fishery managers of possible behavioural responses to policy measures, economic and biological events
- Can guide fishery managers away from achieving success in a fishery in one instance but enduring pitfalls down the road (Texas closure: Ward and Sutinen, 1994)
- Increased finfish bycatch and interaction with marine turtles
- No understanding of what is driving choices/behaviour
- If negative behavioural responses are foreseen, they can be dealt with pre-emptively rather than after the fact

The Research Focus

- The behavioural component being analysed in this study is location choice. Why?
- Fishing gear in mixed species fisheries can be nondiscriminatory
- By-catch is then largely unavoidable if fishing takes place
- It will vary however, based on where fishing takes place, if species harvest composition is location dependent (Davie and Lordan, 2011)
- Due to benthic habitat variation, depth variation etc.

The Research Focus

- A barrier to studying fishing location choice in the past has been the difficulty of recording vessel location while fishing.
- Past examples either:
- Involved time and cost intensive recording processes that were not applicable to routine fishing practice
- (e.g. Eales and Wilen, 1986; Curtis and Hicks, 2000; Mistiaen and Strand, 2000; Valcic, 2008).
- Analysed a fishery where discrete fishing locations were clearly defined and easily observable
- (e.g. Dupont, 1993; Smith, 2005)
- No clear definitions of discrete fishing locations while 'at sea'

VMS data

Vehicle Monitoring Systems

- Vessels positional data recorded every two hours during every fishing trip made
- Travel speed rule can be used to differentiate fishing activity from other at sea activities (Gerritsen et al. 2012)
- Combined with electronic logbook data, this allows for the creation of a detailed map of the spatial distribution of species catches

The Fishery

- Irish Demersal Otter Trawl Fleet
- 101 vessels in 2009
- Target demersal species that dwell on the sea floor
- Vessel lengths range from 15 m - 40m but usually
- Account for 80% of fleet landings
- Highly mixed species fishery (Davie and Lordan, 2011)
- Species examples

- By catch a major issue

Discrete location alternatives (34)

Research question

- How will a proposed set of species quota changes effect the fishing location choice of vessels in the fishery?
- 2014 quota changes at time of writing (Brussels fisheries council meeting,
 2014)

Discrete Choice Model

- The RUM approach models the site choice from among a set of alternative fishing grounds as a utility-maximizing decision:

$$
U_{n j t}=V_{n j t}+\varepsilon_{n j t}
$$

- Fisher n chooses location i from the set of J alternatives for trip t when $U_{n i t}>U_{n j t} \forall j \neq i$
- Probabilities:

$$
\begin{gathered}
P_{n i t}=\operatorname{Prob}\left(U_{n i t}>U_{n j t} \forall j \neq i\right) \\
\operatorname{Prob}\left(V_{n i t}+\varepsilon_{n i t}>V_{n j t}+\varepsilon_{n j t} \forall j \neq i\right) \\
=\int_{\varepsilon} I\left(\varepsilon_{n j t}-\varepsilon_{n i t}<V_{n i t}-V_{n j t}\right) f\left(\varepsilon_{n t}\right) d \varepsilon_{n t}
\end{gathered}
$$

Conditional Logit Model

	Coef. Est.	Std. Err.
Model Variable		
DIST	-0.0012263*	0.0000791
CODKG	0.0000071*	0.0000014
DEEPKG	-0.0006173*	0.0000494
HADKG	0.0000084*	0.0000009
HKEHG	-0.0000066*	0.0000010
MEGKG	0.0000026*	0.0000005
MONKG	$0.0000124 *$	0.0000011
NEPKG	0.0000009*	0.0000001
RAYKG	0.0000126*	0.0000013
POKKG	0.0000123*	0.0000011
WHGKG	-0.0000013*	0.0000002
OTHERKG	-0.0000188*	0.0000027
Goodness of Fit		
Number of observations		205,564 (6,046 trips x 34 locationalternatives)
Log likelihood function (LL($\mathbf{\beta}^{\mathbf{\prime}}$)		-17,728.779
Restricted log likelihood		-21,320.376
Chi-squared		7,183.15
LR Chi-squared (12) 1-LL(β^{\prime})/LL(0)		0.16846

Accuracy of Cond. Logit Model

Actual and predicted percentage share of trips to each site for sample period

Impact of quotas on site choice

Actual and simulated (post quota change) percentage share of trips to each site for sample period

Impact on haddock dominant areas

Hadmix cluster \% share trips

Impact on whiting dominant areas

Whiting cluster \% share of trips

Impact on nephrops dominant areas

Nephrops cluster \% share of trips

NUI Galway
OÉ Gaillimh

Impact on monk dominant areas

Monk cluster \% share of trips

Impact of quotas on by-catch levels

- Next step is to estimate changes in bycatch rates given the predicted changes in the percentage share of trips to each site
- This will be a case of applying the estimated relationship between effort and bycatch (Shepard et al., 2014) of various species to the before and after cases and calculating the change

NUI Galway
OÉ Gaillimh

Conclusions

- Changes in location choice correspond to changes in quota of species by which locations are categorised
- Potential behavioural changes can inform managers about potential changes in bycatch levels or other location dependent negative externalities
- VMS data is already routinely collected for fishing vessels and coverage is increasing so methodology could be routinely applied to evaluate behavioural impact of various changes in fishery regulation methods (e.g. creation of marine protected areas)
- Improved data collection and estimation of negative externalities per unit of fishing effort (e.g. interaction with marine mammals) would improve potential usefulness of any such analysis
- Better data on fisher characteristics and site characteristics will benefit such analysis
- Highlights the usefulness of using economic theory to evaluate behavioural impacts of management measures in the short term, not only for determining optimal rates of resource extraction

Thank you

References

Davie, S. and Lordan, C. 国2011回. Definition, dynamics and stability of métiers in the Irish otter trawl fleet. Fisheries Research 111: 145-158

Dupont, D.P. (1993). Price Uncertainty, Expectations Formation and Fishers' Location Choices. Marine Resource Economics 8:21947.

Eales, J. and J.Wilen (1986). An Examination of Fishing Location Choice in the Pink Shrimp Fishery. Marine Resource Economics 2:331-51.
EC, 2015: http://ec.europa.eu/fisheries/cfp/control/technologies/vms/index en.html
Gerritsen, H., Lordan, C., Minto C, Kraak, S. (2012) Spatial patterns in the retained catch composition of Irish demersal otter trawlers: High-resolution fisheries data as a management tool. Fisheries Research 129-13.
Holland, S.D., and J.G. Sutinen (2000). Location Choice in New England Trawl Fisheries: Old Habits Die Hard. Land Economics, 76:133-49. 0: 127-136.
Mistiaen, J.A., and I.E. Strand. (2000). Location Choice of Commercial Fishermen with Heterogeneous Risk Preferences. American Journal of Agricultural Economics 82:1184-90.

OECD 2013. OECD Review of Fisheries: Policies and Summary Statistics 2013
Smith, M. (2005). State Dependence and Heterogeneity in Fishing Location Choice. Journal of Environmental Economics and Management 50(2):319-40.

Valcic, B. (2008). The Economics of Spatial Choice and Displacement: How Fishing Choices Change with Policy, VDM Verlag Dr. Muller Publishing.

Ward, J. and Sutinen, J. 1994. Vessel entry/exit behaviour in the gulf of Mexico shrimp fishery. American Journal of Agricultural
Economics, 76(4): 916-923

